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An Eulerian approach to �uid–structure interaction
and goal-oriented mesh adaptation
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SUMMARY

We propose an Eulerian framework for modelling �uid–structure interaction (FSI) of incompressible
�uids and elastic structures. The model is based on an Eulerian approach for describing structural
dynamics. This is achieved by tracking the movement of the initial positions of all ‘material’ points.
In this approach the displacement appears as a primary variable in an Eulerian framework.
Our approach uses a technique which is similar to the level set method in so far that it also tracks

initial data, in our case the set of initial positions (IP), and from this determines to which ‘phase’ a
point belongs. To avoid the occasional reinitialization of the initial position set we employ the harmonic
continuation of the structure velocity �eld into the �uid domain.
By using the IP set for tracking the structure displacement, we can ensure that corners and edges of

the �uid–structure interface are preserved well.
Based on this monolythic model of the FSI we apply the Dual Weighted Residual (DWR) method

for goal-oriented a posteriori error estimation to stationary FSI problems.
Examples are presented based on the model and for the goal-oriented local mesh adaptation. Copyright

? 2006 John Wiley & Sons, Ltd.

KEY WORDS: Eulerian model for �uid–structure interaction; initial position method; level set method;
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1. INTRODUCTION

Two large domains of numerical simulation of physical systems are computational �uid
dynamics and computational structure dynamics. With the introduction of high performance
computing, attention has started to shift to systems consisting of a coupling of �uid and
structure dynamics.
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Figure 1. Partitioned approach, Lagrangian and Eulerian frameworks coupled.

General examples of �uid–structure interaction entail �ow containing elastic particles
(particulate �ow), �ow around elastic structures (airplanes, submarines) and �ow in elastic
structures (haemodynamics, transport of �uids in closed containers). In all these settings the
immediate dilemma though when confronted with the task of modelling the coupled dynamics
is that the �uid model is conventionally based on an Eulerian perspective in contrast to the
conventional Lagrangian approach for the solid model.
Combining these two perspectives in one common description can be troublesome. On the

one hand, the �uid domain itself is time-dependent and depends on the deformation of the
structure domain. On the other hand, for the structure the �uid boundary values (velocity and
the normal component of the stress tensor) are needed. In both cases values from the one
problem are used (optionally interpolated) for the other, this is costly and can lead to a loss
of accuracy.
A known approach is to separate the two models, solve each separately, and so converge

iteratively to a solution which satis�es both (Figure 1). Solving the separated problems serially
multiple times is referred to as a partitioned approach; each system is solved conventionally,
and one iterates between the systems until the interface conditions are satis�ed. A partitioned
approach does not permit for the problem to be written in a complete variational formula-
tion. To do this usually an auxiliary unknown domain transformation function T is introduced
for the �uid domain. With this the �uid problem is rewritten as one on the transformed
domain‡ (Figure 2). For this see arbitrary Lagrangian–Eulerian (ALE) methods [1–3] and
deforming space–time �nite element formulations [4, 5]. Both the partitioned and the transfor-
mation approach to the Euler–Lagrange discrepancy explicitly track the mesh and are generally
referred to as interface tracking methods. For both of them the structure problem is left in
the Lagrangian framework.
As a third possibility we propose rewriting the structure problem in an Eulerian framework.

A similar approach has been demonstrated by Liu and Walkington [6]. Once rewritten in a
complete Eulerian framework, a phase variable is employed on the �xed mesh to di�erentiate
between the di�erent phases. This approach to identifying the interface is generally referred
to as interface capturing, a method commonly used for simulating multiphase �ows [7, 8].

‡We show in Figure 2 merely as an example to this approach the domains and reference domains of a driven
cavity problem as described in the second example in Section 6. Calculations would be done on the reference
domains. As a part of calculations the auxiliary transformation function T has to be determined at each timestep.
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Figure 2. Transformation approach, both frameworks Lagrangian.

Examples for the use of a phase variable are the volume of �uid method (VOF) [9] and the
level set method [10–12].
With the level set approach the distance function has to continually be reinitialized, due

to the convection velocity in the �uid domain. The two traits (signed distance function and
reinitialization) make modelling FSI problems with cornered structures di�cult using a level
set approach.
The approach we use is a variation to the level set method that makes reinitialization

unnecessary and for which cornered structures pose less of a problem.
The method we describe does not necessitate any speci�c structure model. The key variable

in structure dynamics is the displacement gradient, and since this depends on the displacement,
it is understandable why it is preferably described in the Lagrangian perspective.
To be able to provide the displacements in an Eulerian sense we introduce the set of initial

positions (IP set) of all structure points. These are then transported with the structure velocity
at each time step. Based on the IP set and their Eulerian coordinates the displacements are now
available in an Eulerian sense. (The displacement gradient has to be rewritten appropriately in
an Eulerian approach, this we explain later in Section 3.2.) Since the �uid–structure interface
will be crossing through cells we will have to also transport the IP set in the �uid domain.
If we were to use the �uid velocity for the convection of the IP set this would lead to

entanglement of the respective displacements, which would ‘wreak havoc’ on the interface
cells. This is a known problem with level set approaches. A common method of �xing this
problem has been to occasionally �x the level set �eld between the time steps. The problem
with this method is that the variational formulation is no longer consistent.
As an alternative we harmonically continue the structure velocity into the �uid domain. In

the �uid domain we then use this velocity for the convection of the IP set. Since an IP set
is available in both domains, we can always at each point determine if it belongs to the �uid
or solid part of the model.
Again this approach is similar to the level set approach [10]. It is possible using the level set

approach to also develop a model for FSI [13]. But when developing a complete variational
formulation, especially if the interface contains corners, the two key characteristics of the
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level set approach also become the main cause of concern: reinitialization and the signed
distance function. Although the problem of reinitialization here can also be avoided by using
an harmonically continued velocity, the trouble concerning corner approximation stays.
In contrast to this, by using an initial position set we are deforming a virtual grid of

the structure extended into the whole domain. Based on this grid, corners on the structure
boundaries are approximated better.
The equations we use are based on the momentum and mass conservation equations for

the �ow of an incompressible Newtonian �uid and the deformation of an incompressible
neo-Hookean solid.
The outline of this paper is as follows; in Section 2 we introduce the necessary notations.

In Section 3 the approach and consequently combined equations are presented. In Section 4
the discrete �nite element formulations are presented. To insure robustness of systems the
Local Projection Stabilization scheme is used [14]. In Section 5 results for an example are
shown. In Section 6 for a stationary case we present an a posteriori error estimator, which is
based on the solution of the dual variational problem [15–17]. This we use for goal-oriented
local mesh adaptation.

2. NOTATION

All behaviour takes place in the polygonal domain �⊂Rd (d being 2 or 3). Later for the
discretization we use a �nite element mesh Th of � for the the �nite element method. The
cells of the mesh Th we denote with K .
This domain contains the two time-dependent subdomains: the �uid domain �f(t) and

the structure domain �s(t). We will, unless needed, forgo writing the time-dependency of
these domains.
The boundaries of �, �f, �s we denote, respectively, as @�, @�f, @�s. The common

interface between �f and �s we denote as �i(t) or simply �i.
The initial structure domain we denote as �̂s. Similarly spaces, domains, coordinates, values

(such as pressure, displacement, velocity) and operators based on �̂s (or �̂f) will have an
additional hat.
With L2(X ) we denote the Lebesque space of square-integrable functions on X equipped

with the inner product and norm

(f; g)X :=
∫
X
fg dx; ‖f‖2X =(f;f)X

For tensor valued functions F and G we denote the tensor product

(F :G)X =
∫
X

∑
i; j

FijGij

Generally the domain X will be �, in which case we will forgo supplying the domain index
with all products and norms. For �f, �s we similarly denote the respective spaces, products
and norms with a respective index of ‘f’ or ‘s’. All L2(X ) functions (with X =�, �f(t),
�s(t)) with generalized (in the weak sense) �rst-order derivatives in L2(X ) we assign to the
Sobolev space H 1(X ). Appropriately we denote H 1

0 (X )= {v∈H 1(X ) : v|@X =0}.
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Two frequently used function spaces will be LX and VX

LX :=L2[0; T ;L2(X )d]; VX :=H 1[0; T ;L2(X )d]∩L2[0; T ;H 1
0 (X )

d]

Again, the X -index will be omitted in the case of � and for �f, �s a respective index of
‘f’ or ‘s’ will be used.
Partial derivatives of f to the ith component we denote with @if. The total time-derivative

of f we denote with dtf. The divergences of vectors and tensors we note as divf=
∑

i @ifi

and (divF)i=
∑

j @jFij. The gradient of a vector valued function v we denote as a tensor,
(∇v)ij= @jvi.
With [f] we denote the jump of a function value on a common element edge or an inner

boundary. With the value n we mean the unit vector n at each point of that boundary. For
example [� ·n] on the edge of an an element K ∈Th denotes the jump of � ·n across the
boundary of K to the respective neighbouring element K ′ with normal unit vector n at each
point of that boundary. If K has no respective neighbouring element at a certain part of its
boundary then we de�ne the ‘jump’ value there as [�·n]= 2�·n.

3. FORMULATION

3.1. Fluid

For the liquid we observe a Newtonian incompressible �uid governed by the equations based
on the conservation of mass and momentum. The equations are set in an Eulerian framework
in the time-dependent domain �f(t). For this we use the scalar pressure �eld pf ∈Lf and
the vector velocity �eld vf ∈ vfD + Vf. Here vfD is a suitable extension of the prescribed
Dirichlet data on the respective boundaries (both moving and stationary) of �f and g1 is a
suitable extension to all of @�f of the Neumann values of �f ·n prescribed on the respective
boundaries. We have ‘hidden’ the �uid–structure interface conditions of steadiness of velocity
and normal stress in parts of the boundary conditions vfD and g1. These are addressed below
in Section 3.3. We write the equations in the variational form.
Find {vf; pf} ∈ {vfD + Vf} ×Lf, so that

(�f@tvf + �f(vf ·∇)vf;  v)f + (�f : �( v))f = (g1;  v)@�s + (f1;  v)s ∀ v ∈Vf

(div vf;  p)f =0 ∀ p ∈Lf

(1)

with �f :=−pfI + 2�f�f�(vf), �(x) :=1
2(∇x +∇xT).

3.2. Structure

For the structure we observe a neo-Hookean incompressible elastic medium also governed by
the equations based on the conservation of mass and momentum. Usually the equations are
set in a Lagrangian framework in the domain �̂s with the scalar pressure �eld p̂s ∈ L̂f and the
vector displacement and velocity �elds ûs ∈ ûD+ V̂s, v̂s ∈ v̂D+ V̂s. Here ûD and v̂sD are suitable
extensions of the prescribed Dirichlet data on the respective boundaries of �̂s and ĝ2 is a
suitable extension to all of @�̂s of the Neumann values of �̂s ·n prescribed on the respective
boundaries. Again, similar to the �uid problem, we have ‘hidden’ the �uid–structure interface
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conditions of steadiness of velocity and normal stress in parts of the boundary conditions v̂sD
and ĝ2. These are addressed below in Section 3.3. We assume for the sake of simplicity that
the only boundary displacements that take place are on �̂i: ûD= v̂sD=0 ∀x∈ @�̂s\�̂i. We write
the equations in the variational form.
Find {ûs, v̂s, p̂s} ∈ {ûD + V̂s} × {v̂sD + V̂s} × L̂s, so that

(�sdtv̂s;  ̂ ) ŝ + (�̂sF̂
−T
: �̂( ̂ )) ŝ = (ĝ2;  ̂ )@̂�s

+ (f̂2;  ̂ ) ŝ ∀ ̂ ∈ V̂s

(dtûs − v̂s;  ̂ ) ŝ =0 ∀ ̂ ∈ V̂s

(det F̂ ;  ̂ ) ŝ = (1;  ̂ ) ŝ ∀ ̂ ∈ L̂s

with F̂ := I + ∇̂ûs, �̂s :=−p̂sI + �s(F̂F̂
T − 1), �̂(x) := 1

2(∇̂x + ∇̂xT).
To write these conservation equations in an Eulerian perspective we will need the pressure

p̂s, displacement ûs and displacement gradient ∇̂ûs available in an Eulerian sense: ps, us, ∇us.
Since we will be solving in the Eulerian formulation, values that are not operator based

can simply be rewritten: ps(x)= p̂s(x̂), us(x)= ûs(x̂). Formally this means

ps(x) = p̂s(D(x))= p̂s(x̂)

us(x) = ûs(D(x))= ûs(x̂)
(2)

Here D(x) is the deformation function of points in the deformed domain �s to points in the
initial domain �̂s. The analogous inverse deformation function is D̂(x̂)

D̂ : �̂s →�s; D̂(x̂) = x̂ + ûs= x

D : �s → �̂s; D(x) = x − us= x̂
(3)

Since det ∇̂D̂=det F̂ =1 the deformations D, D̂ are well de�ned.
The immediate di�culty with Equation (2) is that us is determined by ûs and, by way

of D(x), itself. This is unpractical, since u(x) cannot be determined directly. As an usable
alternative, we need a direct way of determining the displacement u(x) that a ‘material’ point
at x has gone through regarding its initial position at point x̂.
To achieve this we introduce the set of initial positions of all points: �∈V . If we look

at a given ‘material’ point at the position x∈� and the time t ∈ (0; T ], then the value �(t; x)
will tell us what the initial position of this point was at t=0. These points are transported in
the full domain with a certain velocity w∈V . The convection velocity in the structure will
be the structure velocity itself w|�s = vs. If the �uid velocity were to be used for convection
in the �uid domain, then the displacements there would eventually become very entangled.
For this reason we use an alternative velocity. This we explain later below in Section 3.3.
We write the equations in the variational form.
Find �∈�0 + V , so that

(@t�;  ) + ((w·∇)�;  )=0 ∀ ∈V (4)

Here �0 is a suitable extension of the prescribed Dirichlet data on the respective boundaries

�(0; x)= x ∀x∈�
�(t; x)= x ∀{t; x} ∈ (0; T ]× @�
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For any point with the initial position x̂ and later at time t the position x this means

x̂ + û(t; x̂)= x

Since x̂=�(0; x̂)=�(t; x) and û(t; x̂)= u(t; x) it follows:

x=�+ u (5)

Applied to the IP set Equation (4)

(−@tu;  ) + (w − (w·∇)u;  )=0 ∀ ∈V

To access the Eulerian displacement gradient we use an identity of the deformation functions
from (3): D(D̂(x̂))= x̂. Deriving this with chain rule leads to

(I − ∇u)(I + ∇̂û)= I ⇔ ∇̂û=(I − ∇u)−1 − I

Thus the Cauchy stress tensor �s can be speci�ed for a neo-Hookean incompressible material
in an Eulerian framework

�s=−psI + �s(FFT − 1)
F = I + ∇̂û=(1− ∇u)−1

Finally we write the structure equations in the Eulerian framework in the time-dependent
domain �s(t) with the respective scalar pressure �eld ps, the vector displacement and velocity
�elds us, vs. The usual incompressibility condition det (F)=1 we replace with the equation
for divergence conservation of the velocity.
Find {us; vs; ps} ∈ {uD + Vs} × {vsD + Vs} ×Ls, so that

(�s@tvs + �s(vs ·∇)vs;  )s + (�s : �( ))s = (g2;  )@�s + (f2;  )s ∀ ∈Vs

(@tus;  )s + (−vs + (vs ·∇)us;  )s =0 ∀ ∈Ls

(div vs;  )s =0 ∀ ∈Ls

(6)

with F := (1− ∇u)−1, �s :=−psI + �s(FFT − 1).

3.3. Combined equations

Since both the the �uid and structure equations (1), (6) for conservation of mass and momen-
tum are now in an Eulerian framework, they can be combined into one uni�ed formulation.
Included in the Neumann condition is the condition that the normal stress of the �uid �f ·n
should be equal to the normal stress of the structure �s ·n. By using one common �eld for
the velocity the steadiness of velocity on �i becomes implied. Any possible Dirichlet velocity
conditions of vfD and vsD that were on @� we combine to a suitable velocity �eld vD ∈V .
The Neumann conditions �f·n=�s·n that are present at the common interface �i now appear
as a boundary integral of the jump [�·n] on the right-hand side

([�·n];  v)�i =
∫
�i

(�f − �s)·nf v dx

By omitting this boundary integral from the right-hand side the steadiness of �·n becomes an
implicit condition of the combined variational formulation. The left over parts of g1, g2 are
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now just the Neumann boundary conditions on @�. These we combine to g3. We write the
Cauchy stress tensor for the whole domain

� := �f�f + �s�s

Here �f, �s are the characteristic functions of �f, �s which are determined by the values of
the IP set �

�f(t; x) =

⎧⎨
⎩
1; �(t; x)∈ �̂f\�̂i

0; �(t; x)∈ �̂s

�s =1− �f

(7)

The interface �i will (usually) be intersecting mesh cells. Due to this we will need a reasonable
continuation of the displacement and the displacement gradient from the structure domain into
the �uid domain. The value of u in the �uid domain will be determined by the choice of the
convection velocity w. If we were to use the �uid velocity this would eventually lead to ever
increasing entanglement, which would necessitate a continual reinitialization of the IP set. As
an alternative we use the harmonic continuation of the structure velocity.
Find �∈�0 + V , so that

(@t�;  ) + ((w·∇)�;  ) = 0 ∀ ∈V

(�s(w − v);  ) = 0 ∀ ∈V

(�f∇w;∇ ) = 0 ∀ ∈V

(8)

We combine the formulations (1), (6), (8) and (7) with (5).
Find {v; w; u; p} ∈ {vD + V} ×V ×V ×L, so that

(�@tv+ �(v·∇)v;  ) + (� :  ) = (g3;  )@� + (f3;  ) ∀ ∈V

(div v;  ) = 0 ∀ ∈L

(@tu − w + (w·∇)u;  ) = 0 ∀ ∈L

(�s(w − v);  ) + (�f∇w;∇ ) = 0 ∀ ∈V

with

� := �f�f + �s�s

� := �f�f + �s�s

�f :=−pI + 2�f�f�(v); �s :=−pI + �s(FFT − I)

F := (I − ∇u)−1

�f :=

⎧⎨
⎩
1; x − u∈ �̂f\�̂i

0; x − u∈ �̂s

�s = 1− �f

(9)
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4. FINITE ELEMENT DISCRETIZATION

4.1. Mesh notations

For the discretization a conforming �nite element Galerkin method is used on meshes Th

consisting of quadrilateral (or hexaedral in 3d) elements. The cells of the meshes we denote
with K . The mesh parameter h is a scalar cellwise constant �eld that as a value is assigned
the diameter of the cell on each cell. Re�nement of a cell consists of dividing a cell into
four subcells by drawing ‘vertical’ and ‘horizontal’ lines through the midpoints of the edges.
Coarsening of four cells is possible if these four cells were obtained by re�nement of a larger
cell and none of the four cells have hanging nodes on their edges. The �nest level of cells
on a mesh Th consists of all cells that can be removed by coarsening in one sweep. The
coarsened mesh is referred to as T2h. To facilitate mesh re�nement we allow a cell to have a
node that is on the midpoint of the edge of a neighbouring cell. These hanging nodes cannot
have any degrees of freedom and their values are the interpolations of the values on the points
of the larger edge. For details to this approach see Reference [18].

4.2. Galerkin formulation

With the arguments U = {v; w; u; p}, �= { v;  w;  u;  p} ∈W :=V ×V ×V ×L we write
Equations (9) as a semilinear form

a(U;�) := (�@tv+ �(v·∇)v;  v) + (�(U ) : �( v))

+(div v;  p)− (g3;  v)@� − (f3;  v)

+ (@tu − w + (w·∇)u;  u)

+(�s(w − v);  w) + (�f∇w;∇ w)

With this we write the problem in a compact form

Find U ∈U0 +W; so that

a(U;�)=0 ∀�∈W

Here U0 is an extension of certain Dirichlet boundary conditions. As a discretization of
the functions spaces we use one that is Q1 for all components, similar to the Q1=Q1 Stokes
element. See References [19, 20].
The corresponding �nite element subspaces we denote by Lh ⊂L, Vh ⊂V , Wh ⊂W . As time-

stepping methods we use the implicit Euler method in the �rst example and later in the second
example the Fractional-Step � scheme [21–24].

4.3. Local projection stabilization scheme

Since we use an ‘equal-order interpolation’ in our elements, they lack stability and the
necessary discrete ‘inf-sup stability’ (or Babuska–Brezzi) condition for pressure and velocity
(or displacement) is not satis�ed. We circumvent this by using the ‘Local Projection Sta-
bilization’ (LPS) scheme introduced by Becker and Braack as described in Reference [14].

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1017–1039



1026 TH. DUNNE

Additionally we also use this method to stabilize the convection terms. We de�ne the mesh-
and parameter-dependent bilinear form

(’;  )	 :=
∑

K∈Th

	K (’;  )K

	K = 
(�f�f�fh−2
K + �s�sh−2

K + ��|vh|∞;Kh−1
K )

−1

With this we de�ne s	(Uh;�h) as the sum of the following stabilization terms:

• pressure: (∇�hph;∇�h�p; h)	,
• transport: (�vh ·∇�hvh; vh ·∇�h�v; h)	.

Here �h is the ‘�uctuation operator’ on the �nest level of the mesh Th. Based on the L2-
projection operator P2h :Vh →V2h, it measures the �uctuation of a function in Vh in regards
to its projection into the next coarse space V2h

�h :Vh →V2h; �h= I − P2h

The stabilized Galerkin approximation of the problem can be written
Find Uh ∈U0; h +Wh so that

a	(Uh;�h) := a(Uh;�h) + s	(Uh;�h)=0 ∀�h ∈Wh

Two remarkable features are that the stabilization terms only act on the diagonal of the
coupled system and that no second derivatives are needed. This stabilization is called weakly
consistent since the introduced terms vanish for h→ 0. The values 
, � for the stabilization
parameter 	K are chosen manually, our results are based on 
=1=2, �=1=6.

5. FIRST EXAMPLE

As a �rst example we simulate a con�guration that is being used in the DFG research group
FG 493. There are many teams in the DFG research group FG 493 and the simulation results
all vary to some degree. One of the purposes of this group is the comparison of numerical
methods and results based on standardized experimental setups. In this example the most
recent intermediate results given by one of the groups calculate the �nal solution to be similar
but not identical to our results. It is not clear if the di�erences in the results stem from
using di�erent numerical approaches or di�erent code libraries. To ensure a useful comparison
of results, we have also implemented an ALE-based approach using our numerics library
Gascoigne [25]. As we explained in the introduction, this approach is based on the idea of
transforming the time-dependent �uid domain back to its initial reference domain with an
auxiliary functional T in each time-step. A good description of this approach is given by
Hron in [1].
The example is based on the successful DFG ‘�ow around a cylinder’ benchmark [26].
The domain dimensions are: length L=2:5, height H =0:41. The left bottom corner is at

(0; 0). The circle centre is positioned at C=(0:2; 0:2) with the radius r=0:05. The elastic
structure bar has the length l=0:35 and height h=0:02. Its right lower end is positioned at
(0:6; 0:19), the left end is fully attached to the cylinder. The �ag material point A is initially
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Figure 3. Diagram of �rst example.
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Figure 4. Vertical Displacement of the material point A: Eulerian approach.

positioned at (0:6; 0:20). The point A is at the trailing tip of the structure; its position will
change during the course of a simulation (Figure 3).
Boundary conditions: except for the in- and out�ow boundaries, we choose the ‘no-slip’

condition. As an in�ow condition we set a parabolic velocity pro�le on the left side of the
channel: v(0; y)=3:0y(H − y)=(H=2)2. As an out�ow condition we choose the ‘stress free’
Neumann condition: � ·n=0. As an initial condition the velocity is zero and there is no
deformation of the structure. The right-hand side is set to zero. In this example the �uid and
structure constants are: �f=�s=1:0e3, �f=1:0e-3, �s=2:0e6. As a time-step size we use
0:005 s.
The results shown in the Figures 4 and 5 are the vertical displacements of the point A. For

both approaches we obtain a periodic �ag oscillation. For the Eulerian approach we obtain an
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Figure 5. Vertical Displacement of the material point A: ALE approach.

Figure 6. Approximation per level set.

amplitude of 1:6e-2 with a frequency of 6:86 s−1. In comparison to that, based on the ALE
approach, we obtain an amplitude of 1:51e-2 with a frequency of 6:70 s−1. These results are
in good agreement with each other, especially when considering how much the results can
vary as experience in our research group has shown.
In the two �gures below (Figures 6 and 7) we compare the interface approximations of the

end of the �ag from the simulation based on the use of a level set and an initial position set.
In Figure 6 the interface is identi�ed by all points for which �=0. In Figure 7 the interface
is identi�ed by all points which are on one of the respective isoline segments belonging to the
edges of the �ag. The signi�cant di�erences are visible in the cells that contain the corners.
Since the structure deformations are not in a Lagrangian framework, it is not immediately
clear, due to the coupling with the �uid, how well (or how bad) the mass of the structure is
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Figure 7. Approximation per initial position set.
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Figure 8. Relative mass error of the �ag.

conserved in an Eulerian approach, especially during the course of an instationary simulation
after hundreds of time steps. In Figure 8 we display the �ag’s relative mass error in the
course of the simulation. Except for certain initial jitters, the relative error is less than 1%.

6. SECOND EXAMPLE

In the second example we apply the model to a modi�ed driven cavity con�guration. This is
a driven cavity with an elastic volume at the bottom, which we con�gure so that a visible
stationary solution can be expected (Figure 9). To this e�ect we make the material very soft
and also remove convection from both systems. To this we apply the Dual Weighted Residual
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Figure 9. Diagram of 2nd example.

method as a means of sensitivity analysis described by Becker and Rannacher [15, 16]. We
set the right-hand side to zero.

6.1. Con�guration

Except for the top boundary �d1 we use homogeneous Dirichlet boundary conditions for
all velocities and the displacement. To avoid any unnecessary trouble concerning pressure
singularities in the top corners the driving velocity is not constant but instead:

v0 = 0:5

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sin2 (�x=0:6); x∈ [0:0; 0:3]
1; x∈ (0:3; 1:7)
sin2 (�(x − 2:0)=0:6); x∈ [1:7; 2:0]

The width and height of the complete domain we set to 2, the elastic volume at the bottom
has a height of 0:5. The material constants are: �f=�s=1, �f=0:2, �s=2:0.
To reach the stationary state we use a pseudo-time-stepping method. We consider a sta-

tionary state reached once the kinetic energy of the structure is below a desired tolerance,
here: ‖vs‖261e-8. In Figure 10 we display the development of ‖vs‖2 during the pseudo-time-
stepping method in regards to the number of degrees of freedom (dof) in the mesh. As ex-
pected the kinetic energy goes to zero. The multiple ‘bumps’ that are seen, occur due to way
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Figure 11. Relative mass error of stationary results.

the elastic structure arrives at its stationary state, by ‘swinging’ back and forth a few times.
At the extreme of each swing, the kinetic energy is at a local minimum.
In Figure 11 we display the mass error of the structure from the �nal stationary solutions.

These values are plotted against the number of degrees of freedom. The results imply that
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Figure 12. Final position of interface.

that mass error is of the order O(h2). In Figures 12 and 13 we display the �nal stationary
solution for a globally re�ned mesh with 8385 degrees of freedom.
Based on the stationary state with the determined domains we develop the dual auxiliary

problem. This is the basis of the method used for the Dual Weighted Residual method. To
shorten the formulation of the auxiliary dual problem we omit higher order terms, e.g. in the
Cauchy stress tensor for the structure. Since there is no movement in the structure domain,
the mass conservation condition div vu=0 is not practical for the sensitivity analysis. For this
reason the conservation condition in the structure domain will be det (I − ∇u) − 1=0 from
which we omit the higher order terms: det (I − ∇u)− 1≈ div u=0.
Find {v; w; u; p} ∈ {vD + V} ×V ×V ×L=R, so that

(@tv;  ) + (� : �( )) = 0 ∀ ∈V

(�f div v+ �s div u;  ) = 0 ∀ ∈L

(@tu − w + w∇u;  ) = 0 ∀ ∈L

(�s(w − v);  ) + (�f∇w;∇ ) = 0 ∀ ∈V

With � and �{s;f}

� := �f�f + �s�s

�f :=−pI + �f(∇v+∇vT)

�s :=−pI + �s(∇u+∇uT)
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Figure 13. Vertical velocity of �nal solution.

�s=

⎧⎨
⎩
1; x − u∈ �̂s

0; otherwise

�f=1− �s

After having reached the stationary state �f, �s, �f, �s are constant, w=0 and uf := �fu is
known. The model can be written in a reduced form.
Find U ∈U0 + Ṽ , so that

a(U;�)=0 ∀�∈ Ṽ

with

a(U;�) := (�(U ) : �(�v)) + (�f div v+ �s div u;�p)

+ (�f(u − uf);�u) + (�sv;�u)

Ṽ :=H 1
0 (�)

d ×H 1
0 (�)

d ×L2(�)=R

U = {v; u; p}; �= {�v;�u;�p}
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�(U ) := �f(−UpI + 2�f�(Uv)) + �f(−UpI + 2�s�(Uu))

Here U0 is a suitable extension of the prescribed Dirichlet data on the boundaries of �.
To derive an a posteriori error estimator we �rst present the basic framework. A more

detailed theory is presented in References [15–17]. We have the linear Galerkin forms

a(U;�)= F(�) ∀�∈V

a(Uh;�h) = F(�h) ∀�h ∈Vh

(10)

Using Vh as the test space in the �rst equation of (10) and subtracting the second equation
from this leads to the Galerkin orthogonality

a(E;�h)=0 ∀�h ∈Vh; (E :=U − Uh) (11)

For a given linear evaluation functional J (·) the associated dual problem is

a(�; Z)= J (�) ∀�∈V (12)

By setting �=E and applying the Galerkin orthogonality (11) we obtain

J (E) = a(E; Z)= a(E; Z −�h) ∀�h ∈Vh

= F(Z −�h)− a(Uh; Z −�h) ∀�h ∈Vh

In our case the right-hand side functional F is (�fuf;�u). As a �rst step to approximating
the error J (E) we integrate parts of a(·; ·) partially on ‘cells’ in the modi�ed mesh T̃h

T̃h := (Th ∩�f)∪ (Th ∩�s)

The mesh T̃h di�ers only from Th in so far that the cells that contain the �uid–structure
interface are subdivided into �uid domain part and structure domain part

J (E) = F(Z −�h)− a(Uh; Z −�h)

=
∑

K∈˜Th

(div �(Uh); Zv −�h; v)K − ( 12 [�(Uh)·n]; Zv −�h; v)@K

−(�f divUh; v; Zp −�h;p)K − (�s divUh;u; Zp −�h;p)K

−(�f(Uh;u − uf); Zu −�h; u)K − (�sUh; v; Zu −�h; u)K

By applying the triangle inequality to |J (E)| we obtain

|J (E)|6 ∑
K∈˜Th

‖div �(Uh)‖K‖Zv −�h; v‖K

+ ‖ 12 [�(Uh)·n]‖@K‖Zv −�h; v‖@K

+ ‖�f divUh; v‖K‖�f(Zp −�h;p)‖K
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+ ‖�s divUh;u‖K‖�s(Zp −�h;p)‖K

+ ‖�f(Uh;u − uf)‖K‖�f(Zu −�h; u)‖K

+ ‖�sUh; v‖K‖�s(Zu −�h; u)‖K

We use the interpolation IhZ of Z for �h and approximate with Cauchy–Schwarz to

|J (E)|6 ∑
K∈˜Th

�K!K

�2K := ‖div �(Uh)‖2K + h−1
K ‖ 12 [�(Uh)·n]‖2@K

+ ‖�f divUh; v‖2K + ‖�s divUh;u‖2K + ‖�sUh; v‖2K
!2K := ‖Zv − IhZv‖2K + hK‖Zv − IhZv‖2@K + ‖Zp − IhZp‖2K + ‖Zu − IhZu‖2K

(13)

The cell-residuals �K we evaluate directly with the help of post-processing of Uh. The cell-
error-weights !K we approximate using interpolation estimates

!2K = ‖Zv − IhZv‖2K + hK‖Zv − IhZv‖2@K + ‖Zp − IhZp‖2K + ‖Zu − IhZu‖2K
6 c2l h

4
K‖∇2Zv‖2K + c2l h

4
K‖∇2Zp‖2K + c2l h

4
K‖∇2Zu‖2K

(14)

The interpolation constant is cl ≈ 0:1 : : : 1. The second derivatives ∇2Z(·) we replace with the
discrete second-order di�erence quotients ∇2

hZh;(·) that we get from the Ritz projection of Z .
As an example we apply this method for calculating the point-value of the pressure at the

point P=(0:5; 1:0). For this we set J to be the approximation of
∫
	Pp dx

J (p)= |KP|−1
∫
KP

p dx

where KP is the cell in the Mesh Th containing the point P. As a reference value to the
pressure at the point P we use the results from a globally re�ned grid with 33 153 degrees
of freedom. The approach we use for the adaptive re�nement is straightforward:

1. Calculate primal solution on the mesh starting with the initial state of no deformation.
2. Calculate dual solution of dual problem.
3. With primal and dual solutions determine the cells errors 
K , being the product of the
cell-residuals �K and -weights !K .

4. Mesh Adaptation: the strategy that we use here is to determine the 30% largest and 10%
smallest values of 
K . The largest and smallest values we use to determine which cells
to re�ne and coarsen once. Re�nement takes place �rst. When coarsening, we consider
the previous re�nement and possible neighbouring cells with hanging nodes. (Re�nement
and Coarsening, especially concerning hanging nodes, are described in Section 4.) On a
2d mesh with quadrilateral cells this leads to the number of cells approximately doubling
with each iteration.

5. If certain criteria have not been met continue with step 1, otherwise go to next step.
6. Post-process and �nish.
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Figure 14. Reduction of the pressure value error.
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Figure 15. Relative mass error.

In Figures 14–16 we show the results for a few iterations of adaptive re�nement. As expected
two re�nement e�ects can be observed. There is local re�nement around the point of interest
and since the position of the �uid–structure interface is a decisive factor for the pressure �eld,
local re�nement has also taken place at the interface. Maybe surprising is that in Figure 15
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Figure 16. Locally adapted meshes.

there is no reduction of the mass error in the last iteration. This is due to the approach we
are using here. After each mesh adaptation cycle a new primal solution is calculated, starting
with the initial state of no deformation. The sensitivity analysis though does not take the
initial state into account. Mesh adaptation takes place around the �nal state of the interface,
it does not consider its initial state. An easy way of alleviating the mass error problem is
to explicitly move a certain amount of local re�nements with the interface from one time
step to the next. Doing that though in this example would have made it unclear if the local
re�nement at the �nal interface position was due to the sensitivity analysis or the explicit
movement of interface-bound re�nement.

7. SUMMARY AND FUTURE DEVELOPMENT

In this paper we presented a fully variational Eulerian approach for �uid–structure interaction
problems. This approach is made possible with the help of the IP set method. The main
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advantage of the IP set approach with respect to the level set approach is the improved
handling of geometries containing corners. By using the harmonic continuation of data we
avoid the occasional need of reinitialization of the IP set. Based on the IP set method numerical
simulations of FSI problems with free bodies and large deformations become feasible. This is
a main advantage of this method in respect to methods that are based on the ALE approach
as described in the introduction.
Results for the Eulerian approach shown in the �rst example are in good agreement with

results obtained based on the ALE approach. To insure a ‘fair’ comparison of results, both
approaches, Eulerian and ALE, were implemented using the otherwise same numerical methods
and software library Gascoigne [25].
Results shown in the second example display the conservation of mass to be good, the mass

error was of the order O(h2). Results also showed that the application of the Dual Weighted
Residual (DWR) method was feasible and lead to an improvement of convergence of the goal
functional.
Based on the fully variational Eulerian approach sensitivity analysis by ways of the DWR

method is possible. One direction of future investigation will be to use the DWR method for
optimization problems of stationary and instationary FSI problems. Consider for instance in
the �rst example, if we had wanted to change the �ag’s amplitude and frequency by modifying
the material parameters at two material positions. This is an optimization problem that can
be addressed with the help of the DWR method.
Also of interest will be to use the DWR to determine to what detail exactly the �uid–

structure interaction has to be resolved if one is merely interested in evaluating data that is
not immediately connected to the interaction. As a simple example, consider changing the
geometry of the driven cavity problem by making �uid cavity ten times higher. If only data
at the top is of interest, to what detail is resolving the interaction even necessary? In more
complicated (especially instationary) geometries this is a fascinating problem which we plan
to address using the DWR method.
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